Su carrito de compras está vacío
 
English Polski Spanish 
Buscar un manual
 

(p.Ej. AA-V20EG JVC, ZX-7 Sony)
PayPal 1000+ rating Secure, Encrypted Checkout.
 
Usuarios conectados
Actualmente hay 6043 visitantes online.
Productos
Información
Destacado
Inicio >> PANASONIC >> TX14C3T/S/Y Manual de Servicio
 
 0 artículo(s) en Su carrito 

PANASONIC TX14C3T/S/Y
Manual de Servicio


¡Twitee acerca de este producto y obtenga $1.00 de crédito en la tienda para uso!
  • Contiene diagramas del circuito
  • Descargable
  • Formato PDF
  • Manual completo
  • Idiomas: English
Precio: $4.99

Descripción del PANASONIC TX14C3T/S/Y Manual de Servicio

Manual de servicio completo en formato digital (archivo PDF). Los manuales de servicio por lo general contienen diagramas de circuitos, tarjetas de circuitos impresos, consejos para reparación, diagramas de cableado, diagramas de bloque y lista de refacciones. El Manual de Servicio (a veces llamado Manual de Reparación) es usado principalmente por los técnicos.

Si tan solo quiere saber cómo utilizar su televisión, reproductor de vídeo, reproductor de mp3, etc. Quizá lo que necesita es el Manual del Propietario. Después de colocar la orden le enviaremos las instrucciones de descarga a su dirección de e-mail.

The manual is available in languages:

Not yet ready
You must purchase it first

Opiniones de los clientes
No hay comentarios de productos.

TEXT_PDF_SNIPPET
Philips Semiconductors

Wideband 300 W push-pull FM ampli�er using BLV25 transistors
2.2 The input network

Application Note AN98031

This network is very similar to the output network and, like it, consists of three parts: 1. The combination of L1 and L2 forms an unbalanced-to-balanced transformer whose output impedance is 50 � (balanced) 2. The combination L3 and L4 forms a 4:1 impedance transformer whose output impedance is 12.5 � (balanced) 3. The components L5 to L8 and C3 to C7 form a two-section matching network to match the input impedances of the transistors to 12.5 � (balanced). All the remarks made for the output network also apply to the input network, though several values are different. The calculation of the input network was made in the same way as that for the output network. However, the total length of the lines L1 to L4 became too long for practical use. After dividing the lengths of these lines by 1.6, the other components were re-optimized, raising the input VSWR from 1.20 to 1.27. All component values are given in Table 5. A consequence of this way of designing is that the power gain at 87.5 MHz is approximately 1.4 dB higher than that at 108 MHz. This variation must be compensated in one of the driver stages. An alternative design with a nearly flat power gain of about 10 dB can be made, however, the input matching is only good at the high end of the frequency band; at 87.5 MHz, the input VSWR rises to about 3.2. Further details of this alternative are not given here. 2.3 Bias components

Theoretically, point VB can be grounded directly. However, it may be better to ground it via an RF choke shunted by a 12 � resistor as shown in Fig.4 because of: � Small asymmetries in the transistors and circuit, and � Possible parasitic oscillation when the transistors operate in parallel rather than push-pull. Resistors R1 and R2 have been added to improve stability during mismatch. For point VC, the same holds as for point VB, except that the supply voltage must be connected to the former. In the simplest configuration, point VC is decoupled for RF frequencies. A better proposition is probably the circuit shown in Fig.5. 3 3.1 PRACTICAL 300 W PUSH-PULL AMPLIFIER WITH 2 � BLV25 General remarks

Having established a theoretical design, let us now look at a practical implementation. The amplifier has been designed on a double copper-clad epoxy fibre glass (εr = 4.5) board, thickness 1�16-inch. Figure 6 shows the print board and Fig.7 the layout of the amplifier. Rivets and, at the board edges, soldered copper straps have been used to provide good contact between both sides of the board. Where the emitters are grounded, contact is made with the lower side of the board. The print board and transistors are attached to a 10 mm thick copper plate which acts as a heat-spreader. This plate is screwed to a standard heatsink with forced air cooling. At an ambient temperature of 25 °C, and with the amplifier operating at 300 W output power, the heatsink temperature is below 55 °C. 3.2 Alignment

The first alignment was done with small signals, starting with the output circuit. The BLV25 transistors were replaced by dummy loads, representing the complex conjugate of the optimum load impedance. The dummy consists of a 2.22 � resistance and a 300 pF capacitance. To reduce parasitic inductance and to maintain the best possible symmetry, we used several components in parallel. These components were soldered to an empty SOT119 header.

1998 Mar 23

5

Quizás también quiera comprar

$4.99

TX14C3T/S /Y PANASONIC
Manual de Usuario

Manual del propietario completo en formato digital. El manual estará disponible para descarga como …
>
Parse Time: 0.188 - Number of Queries: 102 - Query Time: 0.049